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Who am |

e Arnaud Gourlay
e Full time contributor @qgdrant

e OSSandRust <3

e github.com/agourlay

e agourlay.github.io




Agenda

About Qdrant (pronounced quadrant)

General introduction to vector search engines
Use cases for the technology

How it works internally

What makes Rust a good fit for the job




What is Qdrant?

Open source vector search engine
Written in Rust

Interactions via HTTP/JSON or gRPC
Official clients in Python, Rust & Go
Distributed deployment

Saas cloud offering




Evolution of search

Traditionally exact match on a text keyword
Growing amount of unstructured data
Recommendations are everywhere

Similarity search




Reverse image search (Google Lens)
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Neural search
= Real example on (Simple) Wikipedia (170k documents)

" Query: What i1s the capital of the United States?
=" Top-3 Hits

Lexical Search (BM25) Neural §earch
= Capital punishment (the death = Washington, D.C. [...] is the capital of
penalty) has existed in the United the United States. [...]
States |...] = A capital city (or capital town or just
= Ohio is one of the 50 states in the capital) is a city or town, [...]
United States. Its capital is Columbus. = The United States Capitol is the
[...] building where the United States
= Nevada is one of the United States' Congress meets [...]
states. Its capital [...] source: Nils Reimer




Similarity models

e Trained via machine learning

e ‘“similar” inputs have vectors “close to each other” in space
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Vector search engine

Enables similarity search
Storage: persists durably vector embeddings
Search: find vectors most similar to an input vector

Efficiently!




Usage example

from gdrant client import Qdran
from gqdrant client.http.mode

= QdrantCl

'z
col

Source: https://geo.rocks/post/geospatial-vector-search-gdrant/



https://geo.rocks/post/geospatial-vector-search-qdrant/

from gdrant_client import QdrantClient

client = QdrantClient(host="localhost", port=6333)

client.upsert(
collection_name="{collection_name}",
LS points=[
e Attach additional data to a vector
id=1,
. vector=[0.05, 0.61, 0.76, 0.74],
e Filtered search on payload fields
"city": "Berlin",
"price": 1.99,
. . 3
e Text keyword, numeric, geo coordinates... :
models.PointStruct(
id=2,
vector=[0.19, 0.81, 0.75, 0.11],
payload={
"city": ["Berlin", "London"],
"price": 1.99,
1
).
models.PointStruct(
id=3,
vector=[0.36, 0.55, 0.47, 0.94],
payload={
"city": ["Berlin", "Moscow"],

"price": [1.99, 2.99],




Naive vector search

e Storevectorsin a“table” (4 dimensions in example)
e Compute similarity between input vector and each vector

e Return vector id with max similarity

id w X y z
1 1.22 24.61 8.79 49.08

2 3.45 13.09 44 .32 2.27

3 0.05 67.54 76.87 6.91




We need a vector index

e Traditional indexes do not fit
e Geospatial indexes (KD-trees)
e k-nearest neighbors (kNN)

e Curse of dimensionality

e How to handle very large dimensions?




ANN Search

e Approximate Nearest Neighbors
e Tradeoff: precision vs speed

Recall-Queries per second (1/s) tradeoff - up and to the right is better
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Hierarchical Navigable Small Worlds

.. Layer=2
e Proximity graphs *

e Skip-List S
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*Source: HNSW paper



https://arxiv.org/pdf/1603.09320.pdf

HNSW filtering

e Custom implementation to support payload filters
e Post-filtering vs Pre-filtering

e Enrich graph with indexed payload info

e Single stage search

e https://adrant.tech/articles/filtrable-hnsw/



https://qdrant.tech/articles/filtrable-hnsw/

Distance metrics

e Very common operation (indexing & search)

e Several similarity metrics available depending on encoder

pub trait Metric {
/// Enum value

fn distance() -> Distance;
/// Greater the value - closer the vectors
fn similarity(vl: &[£32], v2: &[£32]) -> £32;

/// Necessary vector transformations performed before adding it to the collection (normalization)
/// Return None if metric does not required preprocessing
fn preprocess(vector: &[£32]) -> Option<Vec<f32>>;




Naive Dot product

impl Metric for DotProductMetric {
fn distance() -> Distance {
Distance::Dot

}

fn similarity(v1: &[f32], v2: &[f32]) -> ScoreType {
vl.iter().zip(v2).map(|(a, b)| a * b).sum()
}




Dot product performance
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SIMD

e Single Instruction Multiple Data.

e Same operation on multiple data simultaneously!
e X86:SSEs, AVXs

e ARM:NEON

e Hand-coded or auto-vectorizing compiler.




Horizontal vs vertical
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SIMD dynamic feature detections




AVX SIMD dot product

& 1, v2: &l 1) ->
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Criterion benchmark

dot-product-group/dot_iter
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SIMD indexing impact

e 100k vectors of dim. 500
e HNSW index with dot product

e Dot iterator: 333 seconds

e Dot SIMD: 95 seconds




Vector collection

e Several segments per collection
e Persistence with RocksDB
e Optimizers keeping things clean

e Inmemoryvs memmap
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Concurrent programing

e Qdrantisinherently stateful
e Manage concurrent accesses
e Threads sharing data via Channel

e Threads synchronizing on Mutex/RwLock




RwLock

e APl enforces proper usage
e Nounlock method!

e Readguard impl. Deref

e Write guard impl. DerefMut

e Checkout parking_lot




Dead locks

e Threads waiting for each other

e Doublereadsonthe same thread

e Notonlylocks

Thread 1 Thread 2
e Not caught by rustc
P Requires diSCip“ne Needs lock on B Needs lock on A
Holds lock on A Holds lock on B

Resource A Resource B




Runtime deadlock detector

e parking_lot “deadlock_detection” build feature

Fix deadlock in cluster status. #712

$- Merged rlay
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Static deadlock detector

e github.com/BurtonQin/lockbud

lib/collection: possible deadlocks caused by double-readlock
ProxySegment #724

(@ Closed ) BurtonQin

@ BurtonQin

Current Behavior




Going distributed

e Stay available

e Scaling out on commodity machines
e Shards &replicas per collection

e Noleader shard for writes

e Transactional vector operations are opt-in




Raft consensus

e Used to synchronize cluster & collection topology
e Agree onsequence of operations (log)

e Leader commits after entry replicated by majority
e raft.rsis not easy but maintainers are responsive

e Debugging can be very difficult




Takeaways

e Demystified vector search engine

e New indexing schemes (ANN/HNSW)
e Apply SIMD to bottlenecks if possible
e Mind the deadlocks

e Distributed systems are hard

e Another data pointin favor of Rust




Farewell links

e https://github.com/adrant/adrant

e https://adrant.tech/documentation
e https://gdrant.tech/benchmarks

e https://blog.gdrant.tech
era nt

e https://adrant.to/discord
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