
Qdrant
A Vector Search Engine in Rust

github.com/qdrant/qdrant

● Arnaud Gourlay

● Full time contributor @qdrant

● OSS and Rust <3

● github.com/agourlay

● agourlay.github.io

Who am I

Agenda

● About Qdrant (pronounced quadrant)

● General introduction to vector search engines

● Use cases for the technology

● How it works internally

● What makes Rust a good fit for the job

What is Qdrant?
● Open source vector search engine

● Written in Rust

● Interactions via HTTP/JSON or gRPC

● Official clients in Python, Rust & Go

● Distributed deployment

● Saas cloud offering

Evolution of search

● Traditionally exact match on a text keyword

● Growing amount of unstructured data

● Recommendations are everywhere

● Similarity search

Reverse image search (Google Lens)

source: Nils Reimer

Neural search

Similarity models

● Trained via machine learning

● “similar” inputs have vectors “close to each other” in space

Vector search engine

● Enables similarity search

● Storage: persists durably vector embeddings

● Search: find vectors most similar to an input vector

● Efficiently!

Usage example

Source: https://geo.rocks/post/geospatial-vector-search-qdrant/

https://geo.rocks/post/geospatial-vector-search-qdrant/

Vector payload

● Attach additional data to a vector

● Filtered search on payload fields

● Text keyword, numeric, geo coordinates …

Naive vector search

id w x y z

1 1.22 24.61 8.79 49.08

2 3.45 13.09 44.32 2.27

3 0.05 67.54 76.87 6.91

… … … … …

● Store vectors in a “table” (4 dimensions in example)

● Compute similarity between input vector and each vector

● Return vector id with max similarity

We need a vector index

● Traditional indexes do not fit

● Geospatial indexes (KD-trees)

● k-nearest neighbors (kNN)

● Curse of dimensionality

● How to handle very large dimensions?

ANN Search
● Approximate Nearest Neighbors
● Tradeoff: precision vs speed

Source github.com/erikbern/ann-benchmarks/

Hierarchical Navigable Small Worlds

● Proximity graphs

● Skip-List

● ‘M’ friends per vector

● ‘efSearch’ per layer

*Source: HNSW paper

https://arxiv.org/pdf/1603.09320.pdf

HNSW filtering

● Custom implementation to support payload filters

● Post-filtering vs Pre-filtering

● Enrich graph with indexed payload info

● Single stage search

● https://qdrant.tech/articles/filtrable-hnsw/

https://qdrant.tech/articles/filtrable-hnsw/

Distance metrics

● Very common operation (indexing & search)

● Several similarity metrics available depending on encoder

pub trait Metric {
 /// Enum value
 fn distance() -> Distance;
 /// Greater the value - closer the vectors
 fn similarity(v1: &[f32], v2: &[f32]) -> f32;
 /// Necessary vector transformations performed before adding it to the collection (normalization)
 /// Return None if metric does not required preprocessing
 fn preprocess(vector: &[f32]) -> Option<Vec<f32>>;
}

Naive Dot product

impl Metric for DotProductMetric {
fn distance() -> Distance {

 Distance::Dot
}

fn similarity(v1: &[f32], v2: &[f32]) -> ScoreType {
 v1.iter().zip(v2).map(|(a, b)| a * b).sum()

}
}

Dot product performance

● 70% CPU in “core..iter..traits..accum..SumGT::sum::”

SIMD

● Single Instruction Multiple Data.

● Same operation on multiple data simultaneously!

● X86: SSEs, AVXs

● ARM: NEON

● Hand-coded or auto-vectorizing compiler.

Horizontal vs vertical

● Horizontal

● Vertical

*source: CMU CS Andy Pavlo

SIMD dynamic feature detections

AVX SIMD dot product

Criterion benchmark

SIMD indexing impact

● 100k vectors of dim. 500

● HNSW index with dot product

● Dot iterator: 333 seconds

● Dot SIMD: 95 seconds

Vector collection

● Several segments per collection

● Persistence with RocksDB

● Optimizers keeping things clean

● In memory vs memmap

Concurrent programing

● Qdrant is inherently stateful

● Manage concurrent accesses

● Threads sharing data via Channel

● Threads synchronizing on Mutex/RwLock

RwLock

● API enforces proper usage

● No unlock method!

● Read guard impl. Deref

● Write guard impl. DerefMut

● Check out parking_lot

Dead locks

● Threads waiting for each other

● Double reads on the same thread

● Not only locks

● Not caught by rustc

● Requires discipline

Runtime deadlock detector

● parking_lot “deadlock_detection” build feature

Static deadlock detector

● github.com/BurtonQin/lockbud

Going distributed

● Stay available

● Scaling out on commodity machines

● Shards & replicas per collection

● No leader shard for writes

● Transactional vector operations are opt-in

Raft consensus

● Used to synchronize cluster & collection topology

● Agree on sequence of operations (log)

● Leader commits after entry replicated by majority

● raft.rs is not easy but maintainers are responsive

● Debugging can be very difficult

Takeaways

● Demystified vector search engine

● New indexing schemes (ANN/HNSW)

● Apply SIMD to bottlenecks if possible

● Mind the deadlocks

● Distributed systems are hard

● Another data point in favor of Rust

Farewell links

● https://github.com/qdrant/qdrant

● https://qdrant.tech/documentation

● https://qdrant.tech/benchmarks

● https://blog.qdrant.tech

● https://qdrant.to/discord

https://github.com/qdrant/qdrant
https://qdrant.tech/documentation
https://qdrant.tech/benchmarks
https://blog.qdrant.tech
https://qdrant.to/discord

